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Abstract
A Method for Atomic Layer Deposition of Complex Oxide Thin Films

Brian R. Beatty

Advisor: Jonathan E. Spanier

Advanced technologies derive many of their capabilities from the advanced materials that

they are made from. Complex oxides are a class of materials which are driving technological

advancement in a host of different directions. These highly functional materials have a great

variety of useful properties, which can be chosen and even engineered.

Advanced materials require advanced deposition methods. Atomic layer deposition

(ALD), a variant of chemical vapor deposition (CVD), is gaining more use in industry

for its ability to provide ultra-high film thickness resolution (down to 0.1 nm), capabil-

ity to conformally coat three-dimensional structures, and its high uniformity across large

surface areas. Additionally, ALD processes provide a possibility to improve economic and

environmental viability of the process as compared to CVD by using and wasting less toxic

reactants and expelling fewer nano-particulate byproducts.

ALD processes are highly mature for many binary oxides commonly used in the semicon-

ductor industries, however processes for depositing heavy metal oxides and complex oxides

— oxides containing two or more separate metallic cations — are sorely lacking in literature.

The primary focus of this work is the development of a process for depositing the complex

perovskite oxide lead titanate (PbTiO3), an end group of the lead zirconate titanate family

(PbZrxTi1-xO3), which has valuable technical applications as well as serves as a template

for applying this research into other material systems.

The author gratefully acknowledges the Army Research Office (ARO) for their support

of this project under the funding provided by Grant # W911NF-08-1-0067.





1

Chapter 1: Introduction

Modern technology stands on the shoulders of modern materials, and the two are in-

extricably linked together. Whenever a new material or property has been discovered or

engineered, applications of this new capability lie just over the horizon.

One of the areas of rapid innovation and great interest in novel applications of material

properties is the field of oxide chemistry. Such a seemingly simple class of materials, exam-

ples of which are two of the most abundant compounds on Earth (i.e. silica and alumina),

has an incredibly rich set of capabilities derived from the incredible variety of potential ma-

terials. One example is the field of high-k dielectric oxides, such as hafnium oxide (HfO2)

and zirconium oxide (ZrO2),1,2 which are allowing the semiconductor industry to produce

more capable devices while reducing power draw. Ferromagnetic and antiferromagnetic ox-

ides form the basis of the ubiquitous magnetic hard disk drive, advancements in deposition

and microstructure control allow for the steady increase in capacities that consumers have

become accustomed to.3

The class of ferroelectric oxides comprises the family of materials that this thesis will

consider. One material in particular will be the primary subject: lead titanate (PTO,

PbTiO3).4,5 Lead titanate is one end group of the lead zirconate titanate family of ferro-

electric oxides (PZT, PbZr1-xTixO3).6 The PZT family is of particular technical importance

to many applications, especially the PbZr0.52Ti0.48O3 form which exhibits exemplary piezo-

electric, ferroelectric, and pyroelectric behavior. PZT’s piezoelectric capabilities allow for

it to be used as actuators and sensors in innumerable devices (e.g. tip actuators in AFM

microscopes and transducers in ultrasound imagers).

Other applications of such materials are found when they are created as nanoscale thin
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films, where these capabilities are both more strongly exhibited. One of the more preva-

lent methods of producing nanoscale films is chemical vapor deposition (CVD), a powerful

process that has been used to deposit a vast number of material types and structures.7

However, there are disadvantages to the CVD method of film deposition. Great care

must be taken to obtain highly regular film thicknesses, and the method of producing most

oxide films — a variation called metallorganic CVD (MOCVD) after the metallorganic

compounds used as reactants — allows a significant amount of hazardous material to be

released into the environment as toxic and nano-particulate byproducts.

Another deposition method, atomic layer deposition (ALD), is becoming popular in

industry applications as an alternative to CVD. ALD provides the user with ultra-high

resolution on film thickness, a lower operating temperature than nearly all CVD processes,

amongst other features. In addition, due to the nature of the process, ALD is capable of

consuming far less precursor material as well as utilizing a far larger percentage in deposit-

ing the film as opposed to producing the types of byproducts caused by CVD.8 This makes

ALD, in situations where it can be applied, the more economical choice, as well as being

more sustainable and environmentally friendly. To this end, the National Science Founda-

tion (NSF) has awarded funding (under 2012 award #1200940) toward the development of

alternative ALD precursors, models, and processes that will attempt to provide additional

improvements to the sustainability of ALD.

However, well described processes for producing ALD films of many materials have not

been developed. Binary oxides (AxOy) have been explored in a fair amount of depth,1,3, 9–11

but there is less research work available covering processes for depositing complex oxide films

via ALD.
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1.1 Project Scope

This thesis will cover the main steps taken in developing a thin film deposition processes

using ALD. In Chapter 2 lead titanate as a material will be introduced, discussing its atomic

structure and some of the desirable properties that it causes the oxide to exhibit.

Chapter 3 will be devoted to a few of the commonly used methods used to produce films

of complex oxides, sol-gel and MOCVD, as well as introducing in detail the primary focus

of this project: ALD as a mechanism for deposition of thin films.

Following this, Chapter 4 will go into detail of the various choices and parameters that

go into the development of an ALD process. Concepts such as the choice of precursors,

the various deposition parameters that must be carefully controlled and tuned to produce

optimal results, and post-deposition annealing will be discussed here.

Chapter 5 will introduce and briefly discuss the topics involved in characterizing the

various materials to be utilized in the deposition process, as well as the various techniques

used to analyze and quantify the properties of the produced samples.

Subsequently, Chapter 6 will go into more detail of exactly how these characterizations

were performed, briefly mentioning various details of the standard measurement techniques

as well as going into a bit more detail where analysis procedures were developed for appli-

cation to this project.

In Chapter 7, the details of the results and data collected from the various measurements

and experiments that were performed during this study will be presented. These results will

be discussed at length, particularly focusing on how they affected the progress and choices

made during the course of the project and the final results of deposited samples.

Finally, Chapter 8 will draw conclusions from the entirety of the work done in the course

of this project, as well as discuss possibilities for future experimentation and refinement of
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the process. A prime example of this would be to apply this research into the development

of a procedure to produce films composed of the far more technically relevant PZT(52-48).



Chapter 2: Lead Titanate

2.1 Structure

Lead titanate (PbTiO3, PTO) naturally orders into the tetragonal perovskite crystal

structure at room temperature (figure 2.1 on the following page). The structure can be

affected by compositional changes, temperature, or strain (primarily in thin-film systems),

allowing a transition to a cubic phase. In the perovskite crystal structure, the central cation

(Ti4+ in the case of PbTiO3) is encapsulated in a octahedral cage of anions (O2–), with the

remaining cations (Pb2+) situated in the eight corners of the unit cell.4,5, 12–18

If the material was doped (as in a mixed solid-solution), some of the cations would be

replaced with the dopant ions, for example Zr4+ would be randomly distributed in Ti4+

sites in the PbZrxTi1-xO3 (PZT) system.4,5, 12–18 However, these dopants have a large and

varied effect on the material behavior and performance.

Taking PbZrxTi1-xO3 as an example (PbZr0.52Ti0.48O3 in particular), the addition of

Zr4+ into the lattice has numerous effects. At the most general, the Zr4+ ion has a different

size parameter than Ti4+, and promotes a number of changes to the overall material struc-

ture.6,19–26 PbZrxTi1-xO3 tends to have its P oriented with different atomic planes than

PbTiO3 would, particularly it tends to orient along one of the eight possible members of the

{111} family in the rhombohedral perovskite crystal structure. PZT(52,48) has the further

advantage of operating at the morphological phase boundary, where multiple phases coexist

giving rise to a far greater number of allowable polarization orientations with equivalent

energies. This behavior is what allows this composition to have such outstanding properties,

and explains its widespread applications as a piezoelectric, pyroelectric, and ferroelectric

material.6,19–26
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Chapter 2

Fundamentals of Ferroelectricity

2.1 General

Perovskites, which can be ferroelectric materials, occur in the ABO3 formation

where A and B represent metals. The three oxygen atoms are located in the center

of the faces of an FCC structure while one metal atom is in the center of the unit

cell and the other is located at the eight corners of a tetragonal structure. Figure 2.1

(from [7]) shows the perovskite structure when there is no strain applied.

Figure 2.1: Perovskite structure for functional oxide ABO3.

5

(a) General Perovskite (b) Lead Titanate (PbTiO3)

Figure 2.1: The perovskite (ABO3) crystal structure.
(a) The general structure of perovskite oxides. (b) Tetragonal asymmetric perovskite structure of
PbTiO3. Grey, red, and blue spheres refer to Pb2+, Ti4+, and O2–, respectively. Additionally, the

octahedral oxygen cage is shown in pale blue.

2.1.1 Effect of Temperature

The transition from tetragonal to cubic perovskite is highly dependent on temperature.

The critical temperature at which this transition occurs is referred to as the Curie tem-

perature (TC). If the material cools through this temperature, a lengthening of the ‘c’

axis of the unit cell spontaneously occurs via a first order phase transition. This creates

anisotropy in the structure and allows for an anisotropic charge distribution to develop. In

lead titanate this is caused by the shifting of the titanium ion, along with a slight shift of

some of the oxygen ions as well (visible in figure 2.1b). Thus, a permanent dipole is created

whose magnitude increases as the system cools further from TC. This permanent dipole

allows the system to exhibit ferroelectricity, implying an ability to semi-permanently switch

the orientation of the dipole in the material. This switching can be reversed, but this will

not occur spontaneously.12,15,17,18
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2.2 Ferroelectricity

Ferroelectricity is the capability of a material to exhibit spontaneous electric polarization

that requires external influence, such as an applied electric field, to be reversed. This is

different from paraelectric (or even dielectric) materials, where there is no polarization

without external field being applied. This can be seen in a plot of energy vs. polarization

(fig. 2.2 on the following page) for the two types of materials. In a ferroelectric material,

the energy minima are found at non-zero levels of polarization.27,28

The effect this has on the polarization of the material is profound, and is the hallmark

of ferroelectricity. A ferroelectric material, once initially polarized, exhibits hysteresis with

respect to its P-E curve (see fig. 2.3b). Thus a ferroelectric material essentially remembers

the sign of its last polarization, and retains that even when no polarizing field is present.

In comparison, a paraelectric material (fig. 2.3a) would exhibit no polarization without a

polarizing field being present.27–30

A formal interpretation of the mathematical theory that describes this behavior is given

by adaptation of the Landau-Ginzberg theory made by Devonshire.31,32 A simplified version

of the Landau’s model for the Gibbs free energy of a system, with respect to an order param-

eter η, can be seen in equation 2.1a on the next page.33 The theory was initially developed

to model superconductive and magnetic behavior,34 whereas Devonshire’s adaption modi-

fies the theory to utilize polarization as the order parameter, as well as temperature-based

effects (see eq. 2.1b on the following page).31,32 Symmetry requirements of ferroelectric

systems allow only even exponents, and it is important to note that both coefficients B

and C are also dependent on temperature. From this model, it can be seen how the Curie

temperature (ferroelectric phase transition temperature) causes the system to change from

ferroelectric, with split potential wells, to paraelectric (reunified potential well). In a ma-
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The order parameter, a property used to describe its phase symmetry associated

with the arrangement of atoms, is the polarization of the material. Ferroelectric

polarization results from a displacement of the center atom of the structure creating

a dipole. In BTO, this displacement occurs along the c-direction. When all the dipoles

of a material are aligned, it will maintain a non-zero electric field. The direction the

center atom moves is dependent on the applied electric field around the material.

Both directions are equal energetically, and the overall energy plot for polarization is

shown in figure 2.2 (from [8]).

Figure 2.2 shows that in the ferroelectric state, a non-polar configuration, corre-

sponding to the peak in the middle of the graph is unstable and not energetically

favorable. This barrier can be overcome with energy provided by an external elec-

tric field. Doing so will cause the center ion to gradually move from one location to

another, called switching, accounting for its characterization as a second order tran-

sition. As temperature increases, the peak will continuously decrease until the Curie

temperature is reached. This is the temperature where the transition from a ferro-

electric to paraelectric material occurs and is also second order. In the paraelectric

state, it is no longer energetically favorable to create polarization states. The graph

will simply be a parabola with the minimum at zero-displacement.

Figure 2.2: Energy and polarization profiles for a FE material below TC (left) and
above TC (right).

(a) Paraelectric

The order parameter, a property used to describe its phase symmetry associated

with the arrangement of atoms, is the polarization of the material. Ferroelectric

polarization results from a displacement of the center atom of the structure creating

a dipole. In BTO, this displacement occurs along the c-direction. When all the dipoles

of a material are aligned, it will maintain a non-zero electric field. The direction the

center atom moves is dependent on the applied electric field around the material.

Both directions are equal energetically, and the overall energy plot for polarization is

shown in figure 2.2 (from [8]).

Figure 2.2 shows that in the ferroelectric state, a non-polar configuration, corre-

sponding to the peak in the middle of the graph is unstable and not energetically

favorable. This barrier can be overcome with energy provided by an external elec-

tric field. Doing so will cause the center ion to gradually move from one location to

another, called switching, accounting for its characterization as a second order tran-

sition. As temperature increases, the peak will continuously decrease until the Curie

temperature is reached. This is the temperature where the transition from a ferro-

electric to paraelectric material occurs and is also second order. In the paraelectric

state, it is no longer energetically favorable to create polarization states. The graph

will simply be a parabola with the minimum at zero-displacement.

Figure 2.2: Energy and polarization profiles for a FE material below TC (left) and
above TC (right).

(b) Ferroelectric

Figure 2.2: Example plots of the energy required to polarize a material. Ferroelectric materials (b) have
non-zero polarization at the energy minima. Above TC all ferroelectric materials transition to a

paraelectic phase (a). As temperature increases, the energy minima will approach one another. These
plots are generalized from equation 2.1b.

terial with a first-order ferroelectric phase transition, the dominating contribution comes

from the P 6 term; if the material exhibits second-order transitions, the P 4 term is instead

dominant. As such, the coefficients, α, B, and C, play a large role in the dominating mate-

rial behavior. These terms are complex and depend on many variables such as temperature

contributions, atomic bonding and bond strengths, and inherent material stresses.

G(η) = G0 + αη +Aη2 +Bη3 + Cη4 + · · · (2.1a)

G(P, T ) =
α0

2
(T − TC) · P 2 +

B

4
· P 4 +

C

6
· P 6 + · · · (2.1b)
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(a) Paraelectric (b) Ferroelectric

Figure 2.3: Example plots of the polarization as a function of applied field. (a) Paraelectric materials
have two regions of polarizability; at low E the polarization increases quickly with the field, as E

increases the rate of increase decreases. (b) Ferroelectric materials show similar behavior, but
additionally have hysteresis. This means that the films are switchable between two states, but it is

difficult to obtain zero polarization.
Image Source: http: // en. wikipedia. org/ wiki/ Ferroelectricity originally contributed by “Bigly” under GNU-FDL.

http://en.wikipedia.org/wiki/Ferroelectricity


Chapter 3: Synthesis Methods

Synthesis of perovskite oxides has been demonstrated using a wide range of techniques.

These range from solution-based processing methods (sol-gel approach), to physical vapor

methods (molecular beam epitaxy and pulsed laser deposition), and gas phase chemical

methods (chemical vapor deposition and atomic layer deposition). This review will briefly

discuss sol-gel and CVD methodology, but will focus in more depth on films deposited via

ALD.

3.1 Sol-Gel Processing

Sol-gel processing is a very commonly used technique for producing oxide films of a

wide variety of types. It is rather straightforward in its method, but it is nonetheless a very

powerful method for producing films with complex stoichiometries. Being a wet-chemical

deposition technique, sol-gel has both advantages and disadvantages. It is a fairly low

temperature deposition technique, but in order to obtain a fully dense and crystalline film

a sintering and annealing step is often required. The solution-based nature of the chemistry

lends itself to very close control of tolerances in the composition of the final film.35,36

Sol-gel processing starts with the production of a colloidal solution containing all of

the elemental precursors that are desired, in the precise ratios desired in the final film.

Generally these precursors are metallic salts or metallic alkoxides, which are combined

and then treated to undergo various co-reactions (hydrolysis, polycondensation, etc.) to

form colloidal particles which become suspended in the solvent. By adjusting the pH and

viscosity, the precursor sol can be converted into a gel which can be used to form a wide

variety of structures such as fibers or powders.37,38
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For film synthesis, generally the sol is kept in a relatively low viscosity state and applied

to a substrate via spin-coating techniques. Modulating the sol viscosity, rotor speed, and

spinning time allows for relatively fine control over film thickness on planar structures,

from the nanometer-scale to the micron-scale. The spun fluid is then heated to liberate any

remaining solvent and catalyze the formation of the fully gelled structure. This low-density

structure can subsequently be heat treated at a much higher temperature to sinter and

anneal the film, providing a much denser sample as well as control over crystallinity and

phase. This improves the mechanical stability of the film, due to the densification, and can

improve material properties by controlling phase purity by the anneal step.35–38

Sol-gel films are very commonly used to produce many different types of high-tech oxide

films. PbZrxTi1-xO3
39 is a very common ferroelectric material that is commonly produced

in powder, film, and bulk forms via this technique. (Ba,Sr)TiO3 is another.40

Some of the disadvantages of sol-gel film deposition is the lack of truly precise con-

trol over the film thickness, its difficulty in evenly coating many types of 3-dimensional

structures, as well as being somewhat difficult to integrate into conventional lithographic

electronics processing.35–38

3.2 Metallorganic Chemical Vapor Deposition

Metallorganic chemical vapor deposition (MOCVD) is a commonly used technique for

depositing many different types of thin film materials. It is especially common for MOCVD

to be used to deposit semiconductor films (a-Si, Ge, III-V, II-VI, etc.); these films can also

be doped to varying degrees with high precision.6,7, 41

A CVD process begins with the introduction of reactant vapors into the reactant cham-

ber. The chamber is heated to a temperature sufficient to cause pyrolysis — thermal
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cracking — of the reactant. This liberates the desirable element, the metallic portion of the

compound, allowing it to adsorb to the substrate. Over time a thin film is deposited. Films

of multiple elements are formed by introducing two different reactants into the chamber si-

multaneously; the same principle works for dopants, but at a much lower concentration.6,7, 41

One advantage of CVD, partly due to the high deposition temperatures involved, is the

ability to have the film deposit epitaxially to the substrate. This allows for the creation

of perfect, or nearly perfect depending on the lattice matching between film and substrate,

interfaces. This is very desirable for a great number of applications, primarily in the semi-

conductor field.6,7, 41

3.3 Atomic Layer Deposition

Atomic Layer Deposition (ALD) is a modification on standard CVD processes, with

a few major differences. The defining aspect of an ALD process is the separation of the

overall reaction into two steps: first the precursor is allowed to react with the substrate

surface (see reaction R 3.1), excess reactant is purged from the chamber and an oxidizer

is introduced to complete the reaction (see reaction R 3.2).8 These reactions show a very

simple ALD reaction between trimethylaluminum (TMA, Al(CH3)3) and water.

Al(CH3)3 + M−OHsurf −−→ M−O−Al(CH3)2 surf + CH4 (R 3.1)

M−O−Al(CH3)2 surf + 2 H2O −−→ M−O−Al(OH)2 surf + 2 CH4 (R 3.2)

In this example, it is seen that the first stage allows the TMA to react with the hydrated

substrate surface to form part of a layer of alumina (Al2O3), liberating a molecule of methane
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Step 2: Removal of the unreacted precursor and reaction products.   
Unreacted precursor, either in the gas phase or physically adsorbed (but not chemically bonded to the surface) 
and the methane (CH4) liberated from the reaction are removed by evacuation of the sample chamber.  
Removal is added by flowing inert gas over the surface.  
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Step 4: Removal of the unreacted precursor and reaction products via evacuation and/or 
inert gas flow. 
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The process begins again with the introduction of precursor A followed by B.  Atomic layers are built up one 
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Figure 3.1: Example schematic of the process of an ALD deposition cycle. This example
illustrates the reaction of TMA and water to form alumina (Al2O3).

Graphics reprinted with permission of Cambridge NanoTech, Inc.
42

as a byproduct. In the next step, the remaining ligands are stripped away from the bound

TMA molecule and replacing them with hydroxyl groups. This returns the system to the

initial state — where the surface is presenting sites available to react with more TMA —

and the cycle is completed. A graphical example of this process can be found in figure 3.1.

Having only surface reactions be permitted, as opposed to CVD where gas-phase interac-

tions dominate, affords ALD a number of unique characteristics. One of these is the concept
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of the “self-limiting” growth mode.8 This behavior arises from the limited number of avail-

able reaction sites; when all of these have either been reacted with or made unavailable by

a blocking mechanism such as stearic hindrance from other local chemisorbed precursor the

reaction can no longer proceed. At this point, additional available precursor is not going to

be utilized, and instead will be removed and treated as waste material. The system is then

evacuated, and a inert purge gas such as dry nitrogen or argon is flowed through the reactor.

The purge gas serves both to push any remaining gases out of the reactor as well as to help

desorb physisorbed species from the surface. The system would then again be evacuated,

and the oxidant introduced and then pumped away to complete the cycle. Because of the

self-limiting behavior of the reactants it is possible, in fact preferable, to utilize reactants

that have highly energetic reactions with their corresponding surface site. For ALD, having

fast and energetic reactions allows for rapid completion of the half-cycle, which allows for

faster cycle times and thus higher throughputs. In CVD such energetic reactions are very

difficult to control, and instead precursors that have only mild reactions — with a Gibbs

free energy exchange as close to zero as possible while remaining negative — with each

other are preferred. These require more effort to develop and require that the process be

carefully controlled, as the reactions often can either easily extinguish themselves or rapidly

accelerate in different conditions.8

In the implementation of most ALD systems, the purge gas is also used as a carrier gas

for the precursors. Thus a constant flow of gas is passed through the system, instead of

having it occasionally fully evacuated, and the precursor is able to be delivered from its

source to the reactor more effectively. For some precursor compounds, in particular those

with a low vapor pressure, having carrier-assisted transportation can greatly improve the

behavior of the system.8
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Because of the self-limiting behavior, each deposition cycle is limited to a theoretical

maximum of one monolayer of material (in practice a much lower coverage per cycle is

attained), which is far less than a unit cell.8 Generally per cycle growth rates range between

0.03–1.5 Å, with the rate being nearly invariable during most of the deposition. This gives

the second defining characteristic of ALD: very high (Å level) thickness resolution. The

downside of this aspect is that growths are generally much slower than other types of

depositions; ALD is generally slower by an order of magnitude or more than a similar

CVD process, as an example. This has proved invaluable in many processes where high

precision is critical, such as electronics manufacturing. Intel, for example, uses ALD to

deposit extremely precise layer thicknesses of a high-κ dielectric (such as hafnia, HfO2) for

use as the gate oxide in transistors.1,43

There are a wide range of binary oxides for which ALD processes have been developed.

A deposition for alumina (Al2O3, one of the first ALD materials developed, was discussed

briefly above and the method is is common use.11,44 High-k gate oxides such as hafnia and

zirconia (ZrO2), along with some of their nitrides and silicides, are under intense research

to develop industrial processes for their use in integrated circuitry.1,43 Other transition

metal oxides, such as titania (TiO2) and iron oxide (Fe2O3), have also had ALD deposition

processes developed for their deposition.3,45

The methods described above will produce a layer of a binary oxide material (AOx);

if more complex materials are desired the method must be changed. The basic principles

remain the same; one would perform the procedure for depositing a cycle of a binary oxide

and then change the precursor and deposit another cycle of a different oxide material. For

example, if one wished to deposit PbTiO3, one would begin by depositing a layer of TiO2

and then depositing a layer of lead oxide (PbO). Repeating this set of cycles — a super-cycle
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— would eventually form an ternary oxide film.

However, deposition of ABO3 oxides is not this simple in practice. In many cases,

running each oxide cycle in a 1:1 ratio will deposit a non-stoichiometric material. This

makes it necessary to modify the method to deposit more of one type of oxide than the

other. For example, if a material is Ti-rich the super-cycle ratio would be modified to

increase the number of lead oxide cycles as compared to the titania cycles. Careful tuning

of the deposition conditions, which include a variety of different factors, is required to obtain

a desired and consistent film stoichiometry.

In addition to lead titanate, there are other ternary oxide systems that are being in-

vestigated. Examples of which are bismuth ferrite (BiFeO3) or barium strontium titanate

((Ba Sr)TiO3).46

ALD reactions are rather sensitive to a number of factors, such as temperature. The

temperature must be high enough that the reactants have sufficient energy to drive the

surface reaction but not so high as to allow undesirable reactions to activate (e.g. precursor

cracking or surface material desorption). Precursor selection is also very important, for

similar reasons. The precursors must also be incapable of reacting with themselves, to

allow the self-limiting mechanism to work properly.8



Chapter 4: Thin Film Growth

4.1 Precursor Selection

4.1.1 Titanium Source

The source of titanium that was used was titanium(IV) isopropoxide (Ti-o-i -Pr, Ti(OCH(CH3)2)4).

This compound is very commonly used in ALD literature.47–52 It is a liquid precursor with

a high vapor pressure and reacts easily with most oxidizers; the most commonly used oxi-

dant for this reaction is water vapor, similar to the TMA-H2O reaction (see Section 3.3 on

page 12).

4.1.2 Lead Source

One of the primary tasks of this project was to identify viable ALD precursors for the

deposition of lead into the thin films. Potential candidates needed to meet a few stipulations.

First, it needed to have chemical and thermal properties compatible with the ALD reactor.

It was also desired that previous studies had used it in other ALD processes. Finally, it was

important that the compound was available in quantity from chemical suppliers.

To this end, there were four potential candidates that were investigated which were

identified from previous literature reports: tetraphenyllead (Ph4Pb),4 lead(II) bis(2,2,6,6-

tetramethyl-3,5-heptanedionato) (Pb(TMHD)2),14 lead(II) hexafluoroacetylacetonate (Pb(HFAc)2),53

and lead bis(3-N,N-dimethyl-2-methyl-2- propanoxide)

(Pb(DMAMP)2).54

Ph4Pb was one of the commonly used compounds in both ALD and MOCVD references,

but it was found to have insufficient volatility for use in the ALD (up to its maximum
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evaporation temperature of 200◦C)4 and was thus discarded as a candidate. Pb(TMHD)2

was another commonly referenced precursor,14 as was Pb(HFAc)2.53 Pb(DMAMP)2 was

seemingly a viable choice, with a very high vapor pressure at low temperatures,54 but it was

not readily available from chemical suppliers and was very costly to purchase which kept it

from being considered further.

Thus, the two compounds Pb(HFAc)2 and Pb(TMHD)2 were investigated in detail as

potential candidates for the lead precursor in the ALD deposition of PbTiO3. Samples of

both precursors were obtained from Strem Chemicals, Inc.55 and were analyzed to determine

which would be most viable. Tests included thermogravimetric analysis (TGA), differential

scanning calorimetry (DSC), as well as test depositions of ALD films.

4.1.3 Oxidizer

Three potential oxidants were considered; these included water, oxygen, and an ozone/oxygen

mix. The choice of oxidant depends heavily on the reactivity with the potential precursors.

The choice of titanium(IV) isopropoxide as the titanium source allows for any of the

three selected oxidizers to be used. A hydrolysis reaction will occur when exposed to

water vapor; in the case of oxygen or ozone the ligands will be consumed via a combustion

reaction.8,45,56

Based on literature reports, the two lead precursors under investigation do not undergo

hydrolysis when exposed to water, and as such require the use of the combustion pathway.

In addition, through the deposition of test films, it was found that the reaction proceeded

more completely when the O3/O2 mixture was used. For simplicity of the process, the

O3/O2 mix was used for both half-reactions.57
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4.1.4 Proposed Reaction Pathway

The reaction pathway seen in figure 4.1 on the following page is a simplified graphical

visualization (in the same character as that seen in figure 3.1 on page 13 for TMA) of ALD

deposition using Pb(TMHD)2 and Ti-o-i -Pr and an O2/O3 mixture as an oxidant.

The chemical reactions seen below (in reactions R 4.1–4.4) also propose a preliminary

mechanism for the chemisorption and oxidation/combustion of the precursors to deposit the

film. As the materials involved are rather large, in particular Pb(TMHD)2, the molecules

have a large stearic hindrance once the chemisorption begins. This impedes the deposition

of more than a small fraction of a monolayer per cycle, with lead depositing more slowly

than titanium. Therefore, it is likely to have to apply the Pb(TMHD)2 half-reaction more

often than the Ti-o-i -Pr reaction when depositing the material.

Pb(TMHD)2 + M−OHsurf −−→ M−O−Pb(TMHD) surf + H(TMHD) (R 4.1)

M−O−Pb(TMHD) surf + xO2 + xO3 −−→ M−O−Pb(OH)3 surf + yCO2 + zH2O (R 4.2)

Ti(OCH(CH3)2)4 + M−OHsurf −−→ M−O−Ti(OCH(CH3)2)3 surf + HOC3H7 (R 4.3)

M−O−Ti(OCH(CH3)2)3 surf + xO2 + xO3 −−→ M−O−Ti(OH)3 surf + yCO2 + zH2O (R 4.4)

4.2 Substrate Preparation

Fabrication and preparation of substrates was an important part of the deposition pro-

cess. Some substrates were purchased and simply cleaned, others needed to be fabricated or

otherwise processed prior to cleaning and use in deposition. Three main types of substrates

were used: thermally oxidized single-crystalline silicon (100) wafers, silicon wafers that had

a thin layer of platinum deposited on the surface, and strontium titanate (100) single crystal

substrates.
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Figure 4.1: Proposed schematic of Pb(TMHD)2 and Ti-o-i-Pr based ALD deposition for PbTiO3.
Purging steps are omitted from this diagram, but would be present between each injection. Steps

(d)–(f) would be repeated to incorporate more lead into the film.



21

4.2.1 Si(100)

The silicon substrates were prepared in a simple manner. 4 in. diameter silicon wafers

with 200 nm of thermally grown oxide (purchased from University Wafer, Inc.55) were diced

into 1.5 cm x 1.5 cm pieces. When a sample was to be used for deposition, it was cleaned by

one minute of sonication in acetone, followed by isopropanol, with a subsequent 5 minutes

of sonication in deionized (DI) water. These were then air dried with dry nitrogen. Finally,

the substrates were cleaned in a oxygen plasma cleaning system to remove any remaining

organic residues present on the surface.58

4.2.2 Platinized Si(100)

Platinized silicon substrates were prepared in a similar manner to the Si(100) samples.

For the initial platinization, a large piece (5 x 5 cm2) of pre-cleaned silicon wafer with a thin

layer of native oxide, as opposed to the 200 nm of thermally grown oxide, was prepared in

the manner described above.58 Then a 15 nm layer of platinum was deposited via ALD.59

The substrates were then cleaved into smaller pieces for subsequent use.

If the samples are stored, it is recommended to again clean the samples in the standard

procedure prior to use (see 4.2.1).

4.2.3 Single Crystal STO(100)

Single crystal substrates of strontium titanate (SrTiO3(100), STO) were purchased from

MTI Crystal, Inc.60 as 5 x 5 x 0.5 mm or 10 x 10 x 0.5 mm pieces. These were subsequently

processed in such a fashion as to promote the formation of atomically flat terraces. This

has the advantage of promoting a uniform surface species across the entire substrate — the

etching process leaves the substrates uniformly titania-terminated.61
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To achieve the desired surface, the substrates were first pre-cleaned in a four step son-

ication process. The crystals were cleaned for five minutes in each of acetone, methanol,

and isopropyl alcohol. Subsequently, the substrates were sonicated for fifteen minutes in DI

water.61 Next, the substrates were then immersed into a commercially prepared buffered

hydrofluoric acid (BHF) solution to etch for 30 seconds, then removed and flushed with

copious quantities of DI water to purge any remaining BHF solution. Once the sample

were thoroughly rinsed, they were dried using dry nitrogen. After the etching process, the

substrates were annealed at 950◦C for one hour.61 Atomic force microscopy (AFM) was

used to confirm the presence of well-defined atomic terraces.

If the samples are stored, it is recommended to again clean the samples in the standard

procedure (see 4.2.1 on the previous page).

4.3 Deposition Parameters

There are four main parameters that can affect the behavior of an ALD deposition.

These are the growth temperature, the dosage of each precursor, the purge time between

doses, and any extended precursor-surface exposure time.

4.3.1 Growth Temperature

The temperature of the growth chamber has a strong effect on reaction behavior. ALD

reactions are sensitive to temperature, and will only proceed properly within a certain range

known as the ‘ALD window.’ Outside of this range, the reaction enters one of a number of

different regimes; these are determined by comparing the growth rate of the deposition to

that of a reaction in the self-limiting saturated “ALD mode.”8,45,56,62
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If the growth temperature is less than the lower bound of the ALD window, the two

regimes are condensation limited and activation energy limited. Condensation limited

growth occurs when the substrate temperature is low enough that precursor condenses

onto the surface without reacting with the presented sites. This causes higher than ex-

pected growth rates, and a lack of self-limiting behavior. If the reaction instead proceeds

into the activation energy limited regime, molecules of precursor lack sufficient energy to

react with the surface. This is characterized by lower deposition rates.8,56

Conversely, if the reactor temperature is excessive the reaction again become anomalous.

Decomposition limited growth, characterized by excessive deposition, is a result of thermal

cracking of the precursor materials. This reaction is not limited to the surface, and accounts

for the extra material being deposited. Lower deposition rates indicate that the temperature

is sufficient to cause desorption of previously-reacted material from the sample.8,62

For an ALD run to be successful, the acceptable temperature window for all of the re-

actions should overlap in some temperature range. This can become difficult with reactions

requiring multiple metal precursors (e.g. PbTiO3, a combination of TiO2 and PbO), as

these can have widely varying ALD windows for their respective reactions.

4.3.2 Precursor Dosage

The dosage of precursor or oxidant to the surface is another parameter of critical im-

portance. An ALD reaction requires a minimal amount of precursor to sufficiently saturate

the surface, while it is beneficial to minimize any excess precursor as it will be a wasted

byproduct (minimizing costs, environmental impact, etc.).

The vaporization behavior of the precursor can have a dramatic impact on how simple or

difficult it is to deliver a saturating dose to the surface. Some materials have readily available
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precursors with high vapor pressures; titanium isopropoxide and trimethylaluminum (TMA)

are both liquids, and tetrakis(dimethylamido)hafnium (Hf{N(CH3)2}4) is a low-melting

temperature solid. These are commonly used precursors for depositing their respective

oxides. This vapor pressure becomes an important consideration when choosing a potential

compound for use in ALD (as discussed in Section 4.1 on page 17).8,45,56,62,63

Insufficient dosing is apparent in a deposition run by a slower than average growth rate,

or also as a non-uniform deposition rate across the sample. However, overdosing is not

readily apparent in an ALD-mode deposition. The dose must be lowered to a point where

the dose is insufficient, and then increased back to a saturating level.

Controlling the dose is dependent on injection time (which is the time the valve between

the process line and the precursor storage vessel is open), precursor temperature, and the

cycle duration (time between precursor injections). By increasing either the injection time

or the precursor’s temperature the dose is increased, except in some cases with low vapor

pressure materials. In this case, it can sometimes be found that the evaporation kinetics

are slow and it takes additional time to build up a sufficient amount of vapor to provide a

dose to the reactor.8,45,62

If necessary, multiple doses of precursor can be delivered to the sample during each cycle

to increase the total delivered dose.

4.3.3 Purge Time

Purge time is important as it gives time for the N2 flow to flush any remaining byprod-

ucts, excess reactants, and physisorbed (as opposed to chemisorbed) species from the sub-

strate surface and out of the reactor zone. It also allows time between cycles which allows for

low vapor pressure precursors to regenerate evaporated material; if this time is too short to
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fully regenerate the dose in the cylinder the precursor will eventually appear to be depleted

during the course of the deposition.8,56

4.3.4 Exposure Time

Exposure time denotes the time where the precursor is held in the reaction zone to

increase the amount of time during which the surface reaction can occur. This is beneficial

for two types of depositions. In the case of low-reactivity precursors, it increases the amount

of time that the precursor is available to the surface, greatly increasing the surface coverage

per cycle. Exposure mode is also beneficial for depositing upon three dimensional structures,

especially those with a high aspect ratio, e.g. nanotube templates. This extra dwell time

of the precursor allows for diffusion of reactant into the structure, for a uniform coverage

upon the entirety of the surface. Purge time must be increased accordingly to allow for

byproducts to diffuse back out of the structure.8,56,64

4.4 Post-Deposition Annealing

Two types of annealing procedures were used in this study. Oven annealing, with

the simple use of a furnace in ambient atmosphere; and rapid thermal annealing (RTA),

characterized by very high heating and cooling rates and performed in an inert atmosphere

(dry N2).

4.4.1 Oven Annealing

In oven annealing, the samples to be processed are placed in a cold oven in the ambient

atmosphere of the laboratory. The samples are then heated gradually at a rate of 10–

25◦C per minute up to the final annealing temperature, which ranged from 600–900◦C. The
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samples are then allowed to heat-treat for 120 minutes at the process temperature, and

then the furnace is allowed to return to room temperature.

This conventional heating pattern allows the sample to obtain its equilibrium crystalline

phase composition, be that a single crystalline phase, polycrystalline, or involve multiple

phases or materials. This was the annealing method most commonly used during this study.

4.4.2 Rapid Thermal Annealing

Rapid thermal annealing (RTA), as its name suggests, involves very high heating and

cooling rates. RTA systems can heat at rates over 10◦C per second, allowing the chamber

and sample to reach the process temperature very quickly. Similarly, processing times are

generally much shorter, and are generally no longer than 10–15 minutes. Cooling, facilitated

by a water cooling apparatus, also occurs rapidly. These sharp gradients can have different

effects on the crystal structure of the film, locking in different phases in the material that

may otherwise dissociate given more time during heating or cooling.

In this study samples processed via RTA used a HeatPulse™ RTA system, which allowed

for automatic control of the process. Sample processing conditions can be found in table 7.1

on page 57.



Chapter 5: Material Characterization

5.1 Thermal Analysis

5.1.1 Thermogravimetric Analysis

Thermogravimetric analysis (TGA) is a very useful tool when attempting to determine

the viability of a precursor in an ALD process. It allows for estimation of vaporization rate at

various temperature rates as well as indications of chemical breakdown (i.e. thermalization)

which would hinder the precursor’s usefulness.

At its core, TGA is a measurement of mass loss as a function of temperature or time.

A small sample (1–10 mg) of material is placed in a microgram balance pan and suspended

inside a furnace. The furnace is then heated at a specified rate while the sample mass is

carefully monitored. For the experiments used in this study (evaluation of thermal vapor-

ization and thermal degradation) it is important to ensure that the testing environment is

inert. This is accomplished by using a platinum pan in the microgram balance and con-

stantly purging the furnace with a small flow of dry nitrogen gas. The heating rate can

be varied according to a pre-determined program to provide more information at various

individual temperatures.65–68

This technique was used to evaluate various precursor candidates for the lead oxide half

of the PbTiO3 deposition procedure. The instrument used was a Q50 TGA device (fig. 5.1a

on the following page). A detailed discussion of TGA procedures and the investigated

chemicals can be found in subsequent chapters (see 4.1 on page 17 and 7.1 on page 50).
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(a) Q50 TGA (b) Q2000 DSC

Figure 5.1: Photograph of the thermal analysis instrumentation used during this study,
made by T.A. Instruments, Inc.

Image Sources: (a) http: // mrc. stu. edu. cn/ old/ Chinese/ Resource/ Equipments/ TGA. htm via Go-Dove.com.69

(b) http: // www. go-dove. com/ en/ event-16047/ lot-213/ TA-Instruments-Q50-Thermo-Gravimetric-Analyser

from Semiconductor-Technology.com.70

5.1.2 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a technique that allows for the determination

of various critical temperatures for a material, and also can highlight changes in chemical

structure due to degradation or other thermal processes.

DSC is the analysis of energy absorption as a function of temperature, which is the

essence of calorimetry. DSC uses a sample and reference system to isolate the energy

absorbed by the sample from that of the holder pan. Sample sizes usually range from

0.1–2 mg of material; as the samples used in this study are volatile the sample pans are

hermetically sealed to prevent mass loss. The sample and reference pans are then placed

inside a thermally insulated chamber. The temperature of each is carefully monitored, and

differing amounts of heat are applied to negate the temperature difference between the

http://mrc.stu.edu.cn/old/Chinese/Resource/Equipments/TGA.htm
http://www.go-dove.com/en/event-16047/lot-213/TA-Instruments-Q50-Thermo-Gravimetric-Analyser
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sample and reference. The difference in absorbed heat as a function of temperature is then

given as the result. In general, experiments include both heating and cooling curves to gain

a complete understanding of the different energies.68,71,72

DSC was used to analyze the behavior of precursor chemicals around their evaporation

and reaction temperatures. The main goal was to determine if the material underwent any

thermally-activated degradation processes at either of these two temperature ranges. At the

evaporation temperature, the sample was generally cycled multiple times to simulate actual

use in the ALD. These measurements were taken using a Q2000 DSC system (fig. 5.1b on

the previous page) made by T.A. Instruments, Inc.

5.2 Thin Film Characterization

5.2.1 Variable Angle Spectroscopic Ellipsometry

Ellipsometry is a powerful non-destructive optical technique that allows for the deter-

mination of a large number of properties of complex thin film structures. The basic tenet

of ellipsometry relies on the analysis of the change in polarization state of a reflected light

beam after interaction with the sample. The incident beam is generally linearly polarized,

but upon reflection becomes elliptically polarized due to a phase shift in the components

of the beam in the s- and p-plane, as well as a change in their relative amplitudes. The

phase shift is correlated to the ellipsometric parameter ∆, while the amplitude change is

given by tan Ψ (Ψ is the angle between the s-plane and the major axis of the ellipse). The

last major parameter is the incident angle, denoted by Φ. A schematic diagram illustrating

these parameters can be seen in figure 5.2 on the following page.73–75

From these parameters, one can directly determine the ratio between the reflectance in

the p-plane (rp) and the reflectance in the s-plane (rs) from the fundamental ellipsometric
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Figure 5.2: Schematic of the beam path during an ellipsometric measurement,
critical parameters are indicated.

Image source: http: // www. tcd. ie/ Physics/ Surfaces/ ellipsometry2. php from Trinity College of Dublin.76

relation (eqn. 5.1). Once this relationship is known, the Fresnel equations (eqn. 5.2) can be

used to numerically determine the value of the complex index of refraction at the specific

wavelength of the incoming beam. The complex index of refraction (eqn. 5.3 on the next

page) describes the nominal index of refraction but additionally includes an imaginary term

to describe absorption of light in the material (commonly referred to as the extinction

coefficient, κ).73–75

ρ(λ) =
r̃p(λ)

r̃s(λ)
= tan(Ψ(λ))ei∆(λ) (5.1)

http://www.tcd.ie/Physics/Surfaces/ellipsometry2.php
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rp(λ) =

ñ1(λ)

√
1−

(
ñ1(λ)
ñ2(λ) sin Φ

)
− ñ2(λ) cos Φ

ñ1(λ)

√
1−

(
ñ1(λ)
ñ2(λ) sin Φ

)
+ ñ2(λ) cos Φ

(5.2a)

rs(λ) =

ñ1(λ) cos Φ− ñ2(λ)

√
1−

(
ñ1(λ)
ñ2(λ) sin Φ

)
ñ1(λ) cos Φ + ñ2(λ)

√
1−

(
ñ1(λ)
ñ2(λ) sin Φ

) (5.2b)

ñ(λ) = n(λ) + iκ(λ) (5.3)

This type of analysis is sufficient for thick, isotropic samples without any surface layers

(e.g. surface oxides or adsorbed gases), and can directly provide the value of ñ as a function

of λ. However, once layers are stacked upon one another, the system becomes very difficult

to analyze directly due to interference effects between the layers, especially at varying

wavelengths. It becomes necessary to use modeling techniques to determine the correct

values of ñ(λ) and thickness (t) for each layer.74,75

The power of ellipsometry as a high-resolution optical analysis technique stems from the

use of phase and polarization changes. This allows the analysis to overcome the diffraction

limit, and can be accurate down to angstroms. Properly modeling the system is critical

for this analysis to be as precise as possible. Thus, there have been refinements of the

ellipsometric method to greatly increase the amount of experimental data points, allowing

the overall system to be over-determined and thus letting all of the systems parameters to

be calculated.

Variable angle spectroscopic ellipsometry (VASE) is one of these variants. Spectro-

scopic ellipsometry differs from single-wavelength ellipsometry by utilizing a broad-band

light source as opposed to a monochromatic source. By performing ellipsometric analysis



32

at each of the wavelengths, one can determine the wavelength (and thus photon-energy)

dependence of n and κ. This not only helps to improve data analysis (as it can generally

be safely assumed that the values of n and κ are smooth functions of λ), but allows for

the determination of many other properties of the material. Of specific importance is the

complex dielectric function (ε̃), which is related to ñ by the relation shown in equation 5.4.

Knowing these functions can allow for determination of electronic properties such as the

bandgap energy, the absorption coefficient, amongst others. Finally, by obtaining spectra at

a number of different incident angles, one directly provides additional data points across the

entire wavelength spectrum. Even a small number of additional angles can quickly provide

sufficient data points for the system to be over determined.73–75

ε̃ = ε1 + iε2 = ñ2 (5.4)

During this project, a VASE M-2000U system (figure 5.3 on the next page) built by

J.A. Woollam, Inc. was used to collect all of the ellipsometric data. In addition, data

analysis was performed using the WVASE32© package also provided by J.A. Woollam,

Inc. The system utilizes a rotating compensator and a CCD detector to greatly decrease

data collection time by collecting data across the entire spectrum simultaneously. More

information on this system is available from the J.A. Woollam, Inc. webpage.77

5.3 Compositional Analysis

5.3.1 Energy-Dispersive X-Ray Spectroscopy

Energy dispersive X-ray spectroscopy (EDXS) is a commonly used analysis technique for

determining the composition of a sample. In this process, a sample is bombarded with high-
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Figure 5.3: Photograph of the J.A. Woollam M-2000U variable
angle spectroscopic ellipsometer (VASE).

Image Source: http: // jawoollam. com/ Gallery/ m2000_ manual2. html from J.A. Woollam, Inc.77

energy electrons (2–30 keV) which interact with the sample. Some of these electrons will

cause a core electron of an atom in the sample to be ejected. This leaves a vacant orbital in

the inner shell, which a higher energy electron will fill. In the process of filling the vacancy,

the electron will emit an X-ray photon equal to the energy difference between the two states.

These energies are referred to using the common X-ray spectroscopy nomenclature (e.g. Kα,

Kβ, Lα). An illustration of this process can be found in figure 5.4 on the following page.78

Since the energies of the emitted photons are very specific to each element, the procedure

can be used to identify the presence of the element in the sample. With some calibration,

EDXS can also be used to quantify the relative amounts of each element in a sample using

the different number of collected photons. However, this can sometimes be difficult due to

some elements have overlapping spectrums as the peaks are not sharp and different elements

can have similar energies for some transitions.78

http://jawoollam.com/Gallery/m2000_manual2.html
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Figure 5.4: Graphic illustrating the basic mechanism for EDXS, along with the commonly used notation
for the various energies. The external stimulation would be a high energy electron.

Image source: http: // commons. wikimedia. org/ wiki/ File: EDX-scheme. svg originally contributed by “Muso” under GFDL license.

One of the downsides of EDXS is that the interaction volume of electrons is much larger

deeper into the sample, so the surface sensitivity of the technique is smaller than with some

other techniques. Additionally, Bremsstrahlung radiation, which is caused by high-energy

electrons interacting with other charged particles, provides a large degree of background

noise which can drastically interfere with the techniques ability to precisely measure, or

even identify, trace elements such as those in a thin film.78

5.3.2 X-Ray Fluorescence Spectroscopy

X-ray fluorescence spectroscopy (XRFS) is a similar technique to EDXS. In XRFS the

excitation used is X-ray photons (often from a Cu Kα source with λ = 1.54 Å), as opposed

to energetic electrons. In other considerations the techniques are equivalent.

XRFS has a lower noise floor than EDXS, due to the lack of signal from Bremsstrahlung

radiation from the deceleration of electrons, allowing smaller signals to be more easily identi-

http://commons.wikimedia.org/wiki/File:EDX-scheme.svg
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fied (such as in ultra-thin films). It does suffer the same disadvantage of having overlapping

peaks. This resolution issue can be alleviated to some degree by using wavelength disper-

sive XRFS (WD-XRFS), which uses diffraction techniques to analyze the emitted x-ray

spectrum.79

X-ray fluorescence spectroscopy was performed using a fX-SEM analysis system from

iXRF Systems, Inc.80 It was the primary method of composition analysis for the results

presented in this thesis.

5.4 Phase Identification

5.4.1 X-Ray Diffraction

X-ray diffraction (XRD) is a very commonly used technique for performing this iden-

tification. Utilizing the concepts of coherent interference, which leads to Bragg’s law of

diffraction given in equation 5.5. X-rays are utilized because their wavelengths are similar

to the length scales between atomic planes in crystals (1–100Å). As the incident rays pass

through the sample and are reflected by atomic planes, they can either constructively or

destructively interfere.81

nλ = 2d sin θ (5.5)

Figure 5.5 on the following page gives a graphical illustration of this principle. If the

extra distance traversed by photons on the first path is equal to an integer number of

wavelengths there will be constructive interference (see fig. 5.5a on the next page). However,

if the θ angle is slightly changed the interference rapidly obtains destructive character (see
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(a) Constructive Interference (b) Destructive Interference

Figure 5.5: These two images illustrate the effect of interference on Bragg diffraction. In (a) the extra
path length is exactly correct to allow coherence with the other ray; this causes constructive

interference. (b) is the other condition, where the path length causes a phase shift of 90◦and thus the
rays interfere destructively.

Image Source: http: // en. wikipedia. org/ wiki/ File: Braggs_ Law. svg originally contributed by “Cdang” under CCA-Share Alike 3.0 License

fig. 5.5b). In this manner, if the crystal is moved through a range of θ−2θ values, a pattern

of angles where constructive interference occurred.81

The diffraction pattern can be used to determine a list of the interplane spacings (d-

spacings) present in the sample. The values of peaks at various 2θ can be converted to

d-spacings via the relation d = λ
2 sin θ . Individual materials will have a specific pattern of

reflections that allow them to be identified in the sample.81

This project used a Rigaku SmartLab XRD (see figure 5.6 on the next page), which

utilized a Cu-Kα X-ray source (λ = 1.5418Å).

http://en.wikipedia.org/wiki/File:Braggs_Law.svg
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Figure 5.6: Photograph of the Rigaku SmartLab X-ray diffractometer.
Image Source: http: // lexi. eng. uci. edu/ facilities. html from the University of California - Irvine82

http://lexi.eng.uci.edu/facilities.html


Chapter 6: Analysis Methods

6.1 Thermal Analysis

6.1.1 Thermogravimetric Analysis

Collection of TGA data was straightforward, and performed as described in the manual

for the Q50 TGA. After initial calibration of the system, a small sample (5–10 mg) of

material was placed into a platinum sample pan. The pan was then loaded into the furnace

of the TGA and a small flow of purge gas (N2 at 50 mL/min) was started to isolate the

sample from ambient atmosphere. At this point the desired test sequence was programmed

into the controller and the instrument allowed to begin data collection.

6.1.2 Differential Scanning Calorimetry

DSC experiments were performed in a similar method as those of TGA. Small samples

of material (3–5 mg) were loaded into hermetically sealed sample pans inside of a glovebox

containing an inert atmosphere. The use of hermetically sealed pans was important as the

material was intended to vaporize, and the loss of material through escaped vapor would

change the results of the test. In addition, loading the material in inert atmosphere prevents

the presence of oxidants within the sample atmosphere during the test. An additional sample

pan was sealed with no contents to act as a reference. Both pans were weighed precisely on

a high-resolution balance and then loaded into the sample chamber of the Q2000. Again,

the desired testing sequence was programmed into the instrument’s controller, and the

experiment was run automatically.
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6.2 VASE and Modeling

Ellipsometry was used extensively to determine a variety of properties of the material.

However, the primary goal of ellipsometric analysis was to determine the film thickness, in

order to be able to determine the film growth rate (in terms of Å per deposition cycle) of

the process.

6.2.1 Data Collection

In order to collect the experimental data, the following series of steps were followed:

1. Optics alignment

2. Ambient light compensation (DC offset)

3. Data collection at multiple angles

Alignment of the optics of the system is performed in the manner described in the manual

for the ellipsometer.83 The system can have focusing optics installed which diminish the

spot size of the analysis, which is useful if inhomogeneity is expected in the sample as this

is a major problem for analysis (two of the main assumptions made by ellipsometric models

are that the layers have consistent thicknesses and optical behavior across the analysis

area). This is done by manually adjusting the sample stage height and the sample surface

plane. The system is designed so that when the incoming signal is maximized the sample

is properly aligned with respect to the p- and s-planes defined by the equipment.84

Once the system is aligned, the signal that is due to ambient light (not produced by the

light source) must be compensated for. The M-2000U defines this as the “DC offset.”83 The

offset is calibrated automatically by the system by blocking the light source and measuring
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the signal from the surroundings. As the light present in the room is generally randomly

polarized, the signal will be invariant to the polarizer settings. Correctly setting this value

greatly decreases the uncertainty during the analysis phase; it mainly affects the degree of

light depolarization measured by the system. The ellipsometer includes the depolarization

in its calculation of the confidence interval for the final measurement. If the degree of

ambient unpolarized light is not determined before the measurement, the depolarization

will be nearly completely unrelated to the actual depolarization by the sample. In addition,

the depolarization can be used by non-idealized models to determine such parameters as

layer thickness variation, or internal interface roughness. This process will not be used for

the remainder of this discussion, but more information can be found in the manual for the

M-2000U.83

After the calibration steps have been completed, data collection can be performed. Three

different incident angles were used for the data collection: 55◦, 60◦, and 65◦. These angles

were chosen as being between the Brewster’s angle85 for two of the main materials when this

method was being developed: silica (SiO2) and crystalline silicon. The Brewster’s angles for

silica and silicon are approximately 57◦ and 75◦, respectively.86 This angle is of particular

significance for optics as light exhibits interesting behavior when incident on materials at

or near this angle. The primary significance is that rp (the amount of p-polarized light that

is reflected) approaches zero. This means that light reflected off of the surface is essentially

only s-polarized, and allows for far better inferences from the ellipsometric data due to

the higher ratios between p- and s-polarized signals. Thus, choosing these angles helps

to minimize the overall contribution from rp, while maintaining a consistent set of angles

across all measurements. Plots of rp, rs, and ru for SiO2 and monocrystalline silicon as a

function of incident angle (λ = 486 nm) can be found in figure 6.1 on the following page.85
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(a) Silicon

(b) Silica

Figure 6.1: These plots give the coefficients of rp, rs and ru as a function of incident angle.86 For each
plot the wavelength (λ) chosen was 486 nm to be in the middle of the range used in ellipsometric

analysis (200–1000 nm).
Image Source: http: // www. refractiveindex. info/ 86

http://www.refractiveindex.info/
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At each angle, the data was averaged over three hundred revolutions of the compensator

to minimize noise in the experimental data. The system was set up to collect depolarization

data simultaneously with the ellipsometric parameters.83

If the sample is expected to be inhomogeneous, the focusing optics can be used and data

collected at several different locations on the sample. This can provide data on how the

growth process behaves spatially, such as if there is abnormal growth near the edges of the

sample but homogeneous deposition as one moves nearer to the center of the substrate.

6.2.2 Model Definition

The definition of the model is a critical part of the analysis procedure. The model

dictates how the software package will perform its various calculations to predict the overall

optical behavior, which it iteratively compares to the experimentally determined Ψ and ∆.

Simply put, the model is defined as a bulk (semi-infinite) substrate layer, with a nominal

number of nano- to micrometer thick layers stacked upon it. Each layer is modeled with

a prediction of optical constants at each test wavelength. These optical constants can be

provided as a table of experimentally determined results, which are available for many

commonly used materials such as silicon, silica, titania, amongst others; they can also be

predicted using a variety of different models. These can be empirical predictors, such as

the Cauchy dispersion, or based upon physical properties of the material, oscillator-based

models for example. The model types relevant to this work are discussed in more detail in

subsequent sections.84

The four different substrates require different material layer stacks to properly represent

them, and each poses individual challenges for characterization. The Si(100) substrate that

was most commonly used for this work was the simplest to model. It can be represented as
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Figure 6.2: A simple graphical example of the model used for analysis of the film stack in the Si(100)
samples. The parameters are t and the spectroscopic values of ñ for the PTO layer.

a substrate layer of silicon, with a 200 nm layer of silica on top. The deposited film would

be layered above the SiO2 layer (see fig. 6.2 for a schematic representation). A large number

of these substrates were analyzed for their oxide layer thickness, where the only parameter

to be fit was the layer thickness. It was found that the nominal oxide layer was 200 ± 5

nm thick. This was consistent enough that 200 nm could be used for the initial thickness

estimate for all samples using this substrate, and after the ALD layer was analyzed this

thickness could also be included in the fit to confirm the true dimensions of the oxide layer.

The substrate with thermally-grown oxide was preferred in comparison to silicon with only

native oxide layer; this is because the thicker layer of transparent oxide helps to generate

large oscillations in Ψ and ∆, which assists in the analysis (particularly the thickness, where

the fringes are very closely related to this parameter).84

6.2.3 Analysis Procedure

Once the data was collected, a specific series of steps was followed in order to obtain

the highest degree of accuracy from the model. All steps were performed on the PTO layer.

The modeling procedure went as follows:

1. High-λ Cauchy Model
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2. Direct Calculation of n and κ

3. Conversion to Oscillator Model

4. Refinement of Oscillator Layer Parameters

This first step takes advantage of the transparency of the film at high wavelengths (low

energies) where the photon energy is below the optical bandgap of the material. In this

region, the Cauchy model can be used. The Cauchy model is empirical rather than physically

descriptive, and best used for amorphous materials such as polymeric films, however the

assumptions required for reasonable accuracy are met when absorption in the film layer

is minimized (therefore κ(λ) ≈ 0). The equations used in the Cauchy model are shown

in equation 6.1. Generally, analysis during this step was performed in the spectral region

where λ = 600− 1000 nm (Eph = 2.06− 1.24 eV).

n (λ) = An +
Bn
λ2

+
Cn
λ4

+ · · · (6.1a)

κ (λ) = Aκe
Bκ(hcλ )−Cκ (6.1b)

Once reasonable estimates for n, κ, and the film layer thickness are obtained at the

higher wavelengths, the second step of the analysis is to generate values of ñ for the rest

of the spectrum. The film thickness parameter is fixed at the value determined from the

Cauchy model. The values of n and κ are allowed to be determined freely without the use

of a model (i.e. directly determined by use of the Fresnel relations). This type of modeling

is not physical, but assists in the generation of the oscillator-based model in the next step.

The software package is then instructed to run a point-by-point fit of the data from highest-

to lowest-λ, attempting to minimize the change in n or κ between adjacent data points.
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This model is then inputted into a oscillator model. For the analysis of these films,

a Tauc-Lorentz oscillator model was utilized. The oscillator models used by WVASE32

are expressed in terms of the complex dielectric function ε̃, which relates to ñ via the

relationship in equation 6.2. The Tauc-Lorentz model changes the Lorentzian model by

allowing for some absorption below the fundamental bandgap energy, which would be due

to defect states and other intra-band transition mechanisms. The Tauc-Lorentz model

uses the parameterization shown in equation 6.3.83,87 ε1 is provided here in a condensed

version (eq. 6.3a); the full expanded version, explanation of terms and variables, and the

complete derivation via Kramers-Kronig consistent integration (whose relations are shown

in equation 6.4)87–89 from ε2, has been presented by Jellison and Modine.87

ε̃ = ε1 + iε2 = ñ2 (6.2a)

ε1 = n2 − κ2 (6.2b)

ε2 = 2nκ (6.2c)

ε1 =
2

π
P

∫ ∞
Eg

ξε2 (ξ)

ξ2 − E2
dξ (6.3a)


ε2(E) =

AE0C (E − Eg)2(
E2 − E2

0

)2
+ C2E2

· 1

E
E > Eg

ε2(E) = 0 E ≤ Eg

(6.3b)

(6.3c)
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ε1 (ω)− 1 =
2

π
P

∫ ∞
0

ω′ε2 (ω′)

ω′2 − ω2
dω′ (6.4a)

ε2 (ω) = −2ω

π
P

∫ ∞
0

ε1 (ω′)− 1

ω′2 − ω2
dω′ (6.4b)

The WVASE32 software package allows one to use a graphical interface to provide initial

guesses for the various fit parameters. At times this required multiple oscillators to best

fit the predicted ε2 function. Once this has been set, all of the parameters affecting ε2

(A,E0, C,EG) are marked to be included in the fit. The software is then instructed to

perform a best-fit of the oscillator to ε2. Once this operation completes, the software is set

to fit to ε1 and only the value of the ε1 offset is allowed to be fit. Finally, the software is set

to optimize vs both ε1 and ε2, and all parameters are included. This completes the initial

setup of the oscillator model.

Finally, the model is set to also allow the layer thickness to be fit and a general fit to

the entire experimental dataset is performed. This provides the best guess to the physical

values of the film. The thickness calculated by this procedure matches very closely to

measurements performed by other methods (e.g. SEM imaging or AFM measurement of a

lithographically created step).

If similar deposition parameters are utilized, it is possible to save the parameterized

model for later use. This allows the analysis to be streamlined when the material is expected

to remain constant, for example if tests of deposition at different layer thicknesses are

performed. In this case, the material would have optical behavior very similar to the initial

sample, and the oscillator model would be sufficiently close to valid parameters to be used

directly for fits. All that would need to be adjusted initially would be the estimated layer
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thickness. If the fit fails to produce useful data, such as unreasonable values for any of the

parameters or very large confidence intervals, it is recommended to proceed with the entire

standard analysis procedure.

Further analysis can be performed to estimate the bandgap of the layer, via Tauc plot

analysis.84,90,91 The method requires the calculation of the absorption coefficient (α) from

the value of k for the layer (see equation 6.5). α is usually provided in terms of cm−1, so if

the wavelength is provided in nanometers a corresponding factor of 107 must be incorporated

as well. Subsequently, a Tauc plot is constructed using a combination of α and the photon

energy. For direct bandgap materials the Tauc parameter is given by (αEph)2.84,90,91 If the

bandgap is of the indirect type, the function is changed to
√
αEph. The bandgap parameter

matches well to literature values (when using standard samples of well defined materials,

such as a thin layer of titania). It must be noted that the bandgap that is calculated

is the overall bandgap of the layer, which may be a combination of multiple phases or

materials.84,90,91

α =
4πk

λ
(6.5)

Experimental data sets, the resulting fitted models, and Tauc analyses for selected

samples are presented in appendix D on page 80.

6.3 Composition Analysis

In order to crystallize the film into a desired phase, without having additional impurity

phases form, it is important to be able to control the stoichiometry of the produced film.

Previous reports have shown that there is a close relationship between the composition of

the film and the final resultant phase (see figure 6.3 on the next page).4
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Interestingly, the films deposited at 300 -C appeared to
behave differently from the films deposited at 250 -C. Even an
annealing temperature of 800 -C was not enough to crystallize
the perovskite phase in oxygen atmosphere, unless the film
contained a significant excess of lead (Ti/Pb 0.71). Even in this
case the perovskite reflections were very weak and a lead oxide
phase was also present. The annealing of the films with Ti/Pb
ratio of 0.9 in O2 at 800 -C resulted in a poorly crystalline lead
oxide phase, while Ti-rich films remained amorphous. After
annealing at 900 -C, the titanium-rich films showed the
presence of the cubic PbTiO3 phase but the Ti-rich monoclinic
PbTi3O7 phase was detected, too. However, samples close to
stoichiometric perovskite as well as the lead-rich films showed
several additional XRD peaks of low intensity originating
probably from various silicate phases.

Nevertheless, annealing in nitrogen seemed to be more
favorable for the films deposited at 300 -C because in nitrogen
the perovskite phase was obtained at annealing temperatures
about 100 -C lower than those in oxygen. Still, 800 -C was
needed to crystallize PbTiO3. Taking into account the high
annealing temperature needed and the poor degree of crystal-
lization in the films deposited at 300 -C, the film deposition
temperature 250 -C seems to be most suitable for depositing
PbTiO3 films by ALD from Ph4Pb/O3 and Ti(O-i-Pr)4/O3.

4. Conclusions

We have demonstrated the ALD growth of PbTiO3 thin
films on Si(100) substrate using Ph4Pb/O3 and Ti(O-i-Pr)4/H2O
as precursors. Furthermore, we have shown that stoichiometric
films with excellent uniformity can be obtained already at 250
and 300 -C by a careful optimization of the Ti :Pb precursor
pulsing ratios. The best quality films with stoichiometric Ti/Pb
ratio were obtained at a deposition temperature of 250 -C using
a Ti :Pb pulsing ratio of 1 :10.

Under a constant deposition temperature and pulsing ratio,
the film thickness of PbTiO3 films was found to be linearly
dependent on the number of deposition cycles in accordance
with the ALD reaction mechanism. Films contained only small
amounts of hydrogen and carbon impurities according to TOF-
ERDA. As-deposited films were amorphous but crystalline

PbTiO3 thin films were obtained with RTA annealing treatment
performed at 600 -C in both N2 and O2 atmospheres. As regard
the smoothness, the rms values of as-deposited films were
already quite high and the film roughness was slightly
increased during annealing. It was found that the annealing
atmosphere did not notably affect the rms values. However, the
use of oxygen atmosphere was found to be a better option than
nitrogen due to enhanced crystallinity and also because the
appearance of the films annealed in nitrogen and the XRD data
also indicated a reaction between the film and the silicon
substrate.
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Fig. 6. The influence of stoichiometry and annealing temperature on the

crystalline phases detected by XRD. The dashed line corresponds to the

stoichiometric composition. The film deposition temperature was 250 -C.
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Figure 6.3: Graphic illustrating preferred phase of an annealed film at a range of stoichiometric ratios
and annealing temperatures. A slight excess of Pb in the system is expected to help stabilize the

perovskite PbTiO3 phase.4

Image reprinted with permission from the Publisher.

6.3.1 X-Ray Fluorescence Spectroscopy

X-ray Fluorescence was the primary method used for determining the composition of

the deposited films. Analysis was performed in a scanning electron microscope (FEI Strata

DB235). The sample was imaged in order to identify the exact height of the sample within

the chamber, via the microscope’s focal length. After the sample had been properly posi-

tioned, the imaging beam was disengaged and the X-ray source activated. Then, in much

the same manner as EDS, the emitted X-rays are collected and analyzed. A target X-ray

count was around 20,000-50,000 for most samples. If the film on a particular sample was

found to be very thin, more counts were often required to obtain well-defined peaks for the

film elements.

Initial calibration of the system is critically important to acquiring accurate measure-

ments. Calibration is performed using a pair of standard samples of known composition,

which include all elements that are to be quantified. For this study, a pellet of commercially
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prepared PbTiO3 powder and a thin film of PbZr0.52Ti0.48O3 were used as standards.

The only major issue with XRF — and composition analysis in general — that was

encountered during the course of this work was the fact that it was not surface sensitive.

In fact, many of the observed counts could be attributed to the substrate. In general this

proved not to be problematic, but when the sample and film had elements in common this

analysis was confounded and completely impossible to perform using XRF. This was the

case with PTO films deposited on SrTiO3 substrates, as both the film and the substrate

had titanium content.

This issue could have been circumvented by using surface-sensitive techniques; examples

of these methods include Auger electron spectroscopy (AES), X-ray photoelectron spec-

troscopy (XPS), and Rutherford backscattering spectroscopy (RBS). Unfortunately, none

of these tools were available at the time and as such samples deposited on STO do not have

associated composition information.

6.4 X-Ray Diffraction

X-ray diffraction (XRD) was used in this study to investigate the phases that crystallized

in the samples after annealing treatments were performed. Sample alignment was an auto-

mated, preprogrammed process for film-type structures; the system performed alignments

on all available axes to ensure optimum sample placement and orientation. Calibration of

the system was managed by lab technicians.

Data was collected in the standard θ − 2θ orientation, and was programmed to sweep

ranges between 10–90◦. Varying time constants were used on different samples, as samples

with thicker ALD films supplied a stronger signal.



Chapter 7: Results

As discussed, the goal of this study was to determine methods for atomic layer depo-

sition of ferroelectric oxides. In the process of realizing this goal there were a number of

different areas of study. The first is the analysis of thermal and chemical behavior of the

various potential precursors, during which TGA and DSC were primarily used (see 6.1 on

page 38). Secondly, the analysis of the film growth behavior under various conditions, this

was primarily measured and analyzed using the ellipsometric techniques discussed earlier

(see 6.2 on page 39). Third, the film deposition needed to be tuned to produce films with

a stoichiometric composition, as this was expected to produce films which would crystallize

into the desired perovskite phase, see Section 6.3 on page 47 for the methods used for this

characterization. Fourth, the phase of the crystallized film was analyzed in detail to deter-

mine behavior of the films post-annealing. XRD was used extensively for this task (see 6.4

on the previous page).

7.1 Thermal Analysis

While a viable titanium precursor was well identified in literature as well as experimen-

tally, as was the oxidizers that were used, there was no such universally accepted chemical

used in ALD to provide a source of lead. The primary issue was either a lack of chemical

stability or a undesirably low volatility in the compounds that currently were being used.

TGA and DSC was performed on a number of potential candidates (see 4.1 on page 17 for

more details) in order to gauge the performance of these materials.
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7.1.1 Thermogravimetric Analysis

Thermogravimetric analysis allows for the estimation and comparison of volatility be-

tween multiple samples. It was used in this study primarily to compare properties of the

two candidate precursors, Pb(HFAc)2 and Pb(TMHD)2. Of primary consideration was the

volatility of the compound — evaluated qualitatively by analyzing the mass loss at various

temperatures — and whether or not there are indications of imperfect evaporation. The

data collected for these materials can be found below.

By analyzing the TGA curve for Pb(HFAc)2, found in figure 7.1a on the next page, there

are a number of features that are immediately noticeable. First of these is the presence of

multiple stages of evaporation in the curve. These occur at approximately 170 and 190◦C.

A TGA curve for a material that is purely evaporative, e.g. pure water, will have a smooth

curve. Additional steps indicate that other processes are activating, and causing changes

to the compound affecting the mass loss.

More detail can be seen by performing a derivation on the TGA curve, giving the mass

loss rate. This plot can be found in figure 7.1b on the following page. This plot shows a

shoulder on the primary evaporative peak, and then another peak starting at around 170◦C

and peaking at 190◦C. The shoulder indicates that even during the evaporation of the bulk

of the material, before residues and other imperfections cause rate changes, a secondary

mechanism is activating and impacting the mass loss rate.

Comparing this data with that of Pb(TMHD)2, it is immediately obvious that the

evaporation mechanism for the latter is much smoother. There is no major visible step,

apart from some slight changes nearing the upper end of the testing temperature range (185–

200◦C). With a closer look at figure 7.2b, it is easier to see that there is smooth vaporization

up to approximately 180◦C, at which point the evaporation is slowed dramatically due to
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Figure 7.1: Plots of the results from TGA experiments on Pb(HFAc)2. The plot shown in (a) gives the
raw data showing the current mass as a function of temperature. (b) gives the same data, transformed

to show the derivative of mass. Thus (b) shows the rate of mass loss at a given temperature. Initial
sample mass: 6.092 mg

residue buildup.

Neither of these precursors evaporated cleanly, leaving residues of more than 20% of

their initial sample mass during the temperature scanning tests discussed above. When

these were tested at moderate temperatures, such as those to be used for evaporation in

the ALD system, both left even larger fractions of their initial masses behind. Testing

at a constant temperature (160◦C) over a longer period of time gives the plots shown in

figure 7.3 on the next page. From this test, it was found that Pb(HFAc)2 left a much larger

residue than Pb(TMHD)2, 63% and 34% respectively.

Based on the results of these tests, the lower residual mass and the cleaner evaporative

process, Pb(TMHD)2 was predicted to have better performance as an ALD precursor.
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Figure 7.2: Plots of the results from TGA experiments on Pb(TMHD)2. As in figure 7.1 on the
preceding page, (a) presents the actual mass as a function of temperature, while (b) gives the derivative

of that function. Initial sample mass: 3.719 mg
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Figure 7.3: Plots of the results from ramp-and-hold TGA experiments designed to investigate residual
material after complete evaporation at a given temperature. From the TGA experiments seen above

(figs. 7.1 on the preceding page and 7.2), a common temperature of 160◦C was chosen for this
experiment. Sample masses were 3.921 mg and 4.381 mg for Pb(HFAc)2 and Pb(TMHD)2 respectively.
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7.1.2 Differential Scanning Calorimetry

As discussed in previous chapters, DSC is a powerful tool for analyzing the behavior

of precursors. The data collected allows for the understanding of various energies in the

material.

When considering the energetic behavior of Pb(HFAc)2 (see fig. 7.4), there are a few

minor features that can be noticed. Primarily at 25 and 150◦C small peaks are visible that

indicate changes in the material other than the solid to liquid phase change, which is the

much larger peak seen around 155-160◦C. However, these peaks appear to be negligible, as

the total energy release by the sample is a mere 5.32 mJ (1.13 J/g), which is too low for

any major chemical changes to be occurring.
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Figure 7.4: Plot of the DSC scan of Pb(HFAc)2. In this plot exothermic behavior, where the sample
releases heat, is considered positive. Thus, the first sweep of the scan (from 0◦C to 200◦C) is negative.

Sample mass: 4.7 mg.
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Similarly, when Pb(TMHD)2 is heated to moderate temperatures (up to 200◦C, see

fig 7.5a on the next page), such as those used in the evaporation and transport stages of

the ALD system, there are no irregularities in the data. There is also no net energy gain or

loss during the test indicating that heating up to 200◦C, along with the associated melting

and freezing of the compound, is not detrimental to its structure.

If the test is again performed, but with a higher upper temperature bound, the data

is drastically different (see fig. 7.5b on the following page). As the sample is heated up to

300◦C, there are a number of significant energy releases that occur. These processes initiate

at 234◦C, and are due to the precursor undergoing pyrolysis reactions. As such, this sets

the safe upper temperature range for the “ALD window” of Pb(TMHD)2 at 230◦C. ALD

reactions require that the precursor arrive to the surface intact and only react with surface

species.
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Figure 7.5: Results from the DSC scans of Pb(TMHD)2. (a) Temperatures up to 200◦C show no
change in the material other than that of melting and freezing. (b) As temperatures increase, features

start to appear indicating chemical reconfiguration of the molecule.
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7.2 List of Samples

Based on the results from the thermal analysis, a number of samples were deposited

with various deposition parameters. Information on the deposition parameters for each of

the samples used in this study can be found in the following table 7.1. A small number

of samples were attempted at 200◦C, but it was quickly determined that 225◦C provided

better growth behavior without risking thermal cracking of the precursor.

Table 7.1: A list of samples produced during the course of this project.

Annealing

Temp. Run # Pb:Ti Cycles Subs. Type Temp. Time

(◦C) Ratio Type (◦C) (min)

200 3 1:1 250 Si None N/A N/A

2 1:2 250 Si None N/A N/A

30 3:1 160 Si None N/A N/A

Pt-Si None N/A N/A

225 0 1:1 625 Si Oven 650 120

Oven 900 120

RTA 900 10

1 1:1 475 Si None N/A N/A

6 1:2 250 Si None N/A N/A

13 3:1 250 Si None N/A N/A

16 3:1 150 Si RTA 650 1

19 3:1 100 Si None N/A N/A

Pt-Si None N/A N/A

20 3:1 200 Si None N/A N/A
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Table 7.1: A list of samples used during the course of this project.

Annealing

Temp. Run # Pb:Ti Cycles Subs. Type Temp. Time

(◦C) Ratio Type (◦C) (min)

Pt-Si Oven 650 90

STO Oven 650 90

21 3:1 150 Si None N/A N/A

Pt-Si Oven 650 90

STO Oven 650 90

22 3:1 150 Si None N/A N/A

Pt-Si Oven 650 90

23 3:1 200 Si None N/A N/A

Pt-Si Oven 650 90

28 3:1 120 STO Oven 650 90

7.3 Ellipsometry

Ellipsometry was a valuable tool during the course of this study. As discussed previously,

it is capable of quickly, accurately, and non-destructively determine various properties of

thin film layer stacks. Of primary importance is the ability of the tool to provide a rapid

method of determining the thickness of a deposited layer. In ALD the growth rate is one

of the primary markers of a well-tuned deposition process. An uncontrollably high growth

rate is nearly as detrimental as having minimal growth. Varying deposition parameters and

noting their effects on the growth rate of the process provided valuable insight into how

best to tune the process.
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Given in table 7.2 is information on various samples and their as-deposited layer thick-

nesses, along with some relevant deposition parameters. One can also see from the plot

of the sample thicknesses with respect to the number of deposition cycles (fig. 7.6 on the

following page) the consistency of a growth rate given a certain set of parameters. There is a

small number of initial cycles required to initiate growth, referred to as “incubation” cycles,

and then the film thickness follows a close linear dependence to the number of deposition

cycles. This is indicative of a deposition that is operating within the ALD window and

behaving well. From figure 7.6 it was found that films deposited on silicon required approx-

imately 10 cycles to initiate layer growth and subsequently grew at a rate of 3.78 Å/cycle.

For platinum coated silicon the incubation time was longer, an average of 36 cycles, but

the films grew at a faster rate of 4.12 Å/cycle. On STO crystals a 21 cycle incubation

period was followed by a growth phase with a rate of 4.08 Å/cycle. This varies greatly from

values reported in table 7.2 as the growth rates reported here do not take into account the

incubation time. The relatively constant number of initiation cycles has a seemingly greater

effect on samples with low cycle counts; the incubation cycles take up a greater percentage

of the total run and lower the growth rate accordingly.

An additional piece of information that can be extracted from ellipsometric analysis is

an estimation of the band gap energy of the deposited layer. Because the final model used

in the analysis method (see Section 6.2.3 on page 43) is physically descriptive of the optical

properties of the material, it is possible to extract such information from the model. By

transforming the plot of the extinction coefficient, k, into that of the absorption coefficient,

α, it becomes possible to use the method developed by Tauc, et.al. to determine the band

gap energy of the material.90,91 However, such analysis does not take into account presence

of multiple phases in the layer; when multi-phase layers are present the resulting band
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Table 7.2: Table of the film thicknesses and associated growth rates as measured by ellipsometry.
Growth rates do not take into account any incubation times for the films.

Pb:Ti Sample Cycles Substrate Thickness Growth Rate
Ratio # Type (nm) (Å/cycle)

1:1 0 625 Si 85.9 1.37
1 475 Si 63.4 1.33

3:1 13 250 Si *32.9 *1.31
16 150 Si 51.2 3.41
19 100 Si 34.3 3.43

Pt-Si 27.5 2.75
20 200 Si 71.8 3.59

Pt-Si 64.4 3.22
STO 73.6 3.68

21 150 Si 53.2 3.54
Pt-Si 45.8 3.05
STO 52.9 3.53

22 150 Si 53.3 3.55
Pt-Si 46.5 3.10

23 200 Si 72.0 3.60
Pt-Si 64.6 3.23

28 120 STO 41.0 3.42
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Figure 7.6: A plot of film thicknesses determined by ellipsometry. Growth rates and average incubation
times are extrapolated from this data. All films were deposited with a 3:1 Pb:Ti ratio and at 225◦C
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gap can only be used as a rough estimate. Tauc analysis also requires that the sample

be properly crystallized, and thus must have undergone an annealing treatment before the

analysis method becomes valid. As samples produced here had low phase purity, which

will be discussed in subsequent sections, this analysis was of little use as a film benchmark.

Some results from these analyses can be found in Appendix D on page 80.

7.4 Composition

Controlling the composition of the film was another primary task during the course of

this project. Controlling the stoichiometry of the deposited films was of critical importance

in obtaining films that presented the perovskite phase. If the balance of the two cations

(Pb2+ and Ti4+) was allowed to stray away from unity, other phases would be preferred or

a mixture of phases would precipitate during a crystallizing heat treatment.

As discussed previously, X-ray fluorescence was the method used for performing the

composition analysis of the film structures. Through testing it was found that a deposition

ratio of 3:1 in favor of the lead half-reaction provided the best film composition; there were

a pair of samples deposited at an even 1:1 ratio that also provided near unity compositions

(sample #0 and #1). A list of samples and their compositions, measured via XRF, can be

found below (see table 7.3 on the next page).

As mentioned in Section 6.3.1, samples deposited on STO were unable to have their

compositions accurately measured using this technique. This was due to the confounding

influence of the titanium content in the STO substrate, and there were no surface sensitive

characterization methods available.
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Table 7.3: Calculated compositions of selected samples, determined via XRF.
Composition percentages are all ±1%.

Composition (%)

Run # Substrate Lead Titanium Ti:Pb Ratio

0 SiO2 56.0 44.0 0.786
1 SiO2 55.0 45.0 0.809
13 SiO2 54.0 46.0 0.853
16 SiO2 49.4 50.6 1.022
19 SiO2 65.9 34.1 0.518

Pt-Si 42.9 57.1 1.333
20 SiO2 56.6 43.4 0.769

Pt-Si 51.5 48.5 0.944
21 SiO2 69.6 30.4 0.437

Pt-Si 56.1 43.9 0.783
22 SiO2 67.7 32.3 0.478

Pt-Si 56.1 43.9 0.784
23 SiO2 66.9 33.1 0.495

Pt-Si 49.1 50.9 1.038
24 SiO2 69.0 31.0 0.450

Pt-Si 62.2 37.8 0.609
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7.5 X-Ray Diffraction

XRD was performed on a number of samples that had indicated composition ratios near

unity. After an annealing treatment, generally performed in a regular ambient environment

furnace but occasionally through use of the RTA, the XRD data was taken. However,

samples processed using the RTA tended to obtain a unique and very rough surface texture,

as opposed to the smooth mirror appearance of samples processed in the standard furnace.

This observation lead to the adoption of the standard furnace as the main method of heat

treatment.

Analysis of XRD spectra made on the samples indicated a significant variety of phases

present in the crystallized films. For example, figure 7.7 on the following page gives the

result from the sample #0 deposited on a platinized silicon substrate. There are three major

phases present: PbO2, PbO, and PbTiO3. The reflections from PbTiO3 and lead(IV) oxide

are much weaker than those from the lead(II) oxide.

However, other samples produced more interesting films. For example, sample #23 on

Pt-Si (see figure 7.9 on page 65), has strong reflections from the PbTiO3 (110) and (101)

planes. There was a significant number of impurity phases present, often in significant

amounts, such as the pyrochlore phases Pb2Ti2O6 and PbTi3O7, which indicates issues

during the crystallization phase of the sample processing. However, the presence of the

desired perovskite phase marked an important point in the course of this study, as it showed

that the process is capable of accomplishing the goal of PbTiO3 via ALD methodology.

Additional samples provided similar results. For example, #20 on Pt-Si (fig. 7.9 on

page 65), has similar impurities but again exhibits an abundance of the PbTiO3 phase.

This sample has a slightly higher concentration of PbTi3O7, and a slightly weaker reflection

from the dominant PTO planes.
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Figure 7.7: This data shows the result of diffractometry on sample #0 Pt-Si. From this, the PTO(100)
reflection can be identified, as well as some other lead oxide phases.
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Figure 7.9: This data shows the result of diffractometry on sample #20 Pt-Si. There are some impurity
phases present, however the strongest signals are due to the

PbTiO3 (101) and (110) reflections (see inset).

Finally, investigation of a sample deposited on strontium titanate crystal (see figure 7.10

on the next page) showed a strong preference of the PTO phase to orient with the orientation

of the substrate. In this sample was also seen presence of titania phases (rutile, α-TiO2)

as composed to samples deposited on Si and Pt-Si substrates. However, since the precise

composition of films on STO is unknown the reason for finding TiO2 is unclear, likely due

to an excess of titanium in the deposited film.
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Figure 7.10: This data shows the result of diffractometry on sample #28 STO. Impurity phases were
present (particularly α-TiO2 and pyrochlore). It was also notable that the PTO phase preferentially

oriented itself with the STO (001) substrate.



Chapter 8: Conclusions

The final result of this study was to show that it is certainly possible to grow perovskites

using an ALD process, but the exact processes are sensitive and require much attention and

further analysis.

At the completion of this project, it can be said that the following goals have been met.

A method for analyzing and predicting the behavior and operating windows of potential

ALD precursors using standard thermal analysis techniques (TGA and DSC) has been

proposed and shows good promise for applicability towards other material systems and

precursor.65,68,72

A reliable method of analyzing film thicknesses and growth rates has been developed

utilizing ellipsometry, which allows for rapid and non-destructive testing (and possibly in-

corporation as an in situ testing mechanism to monitor film growth during deposition).

In addition, the method described is capable of extracting additional information about

film properties (e.g. band gap energies and other electronic characteristics) that could be

applied given a higher degree of phase purity in the final crystallized film.74,75,84

Use of XRF, in place of the more common EDS, allowed for the quantitative analysis

of film composition even at ultra thin thicknesses. This rapid and non-destructive tool

was of significant utility to this project. However, the ability to perform surface sensitive

measurements would have made analysis of films grown on strontium titanate crystals more

complete.79

It was found that phase identification was possible using XRD with the thin films pro-

duced in this study. However, utilization of grazing incidence XRD — a technique used to

improve surface sensitivity of XRD — would likely improve upon the results seen here, and
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would likely prove necessary if films of lower thicknesses were to be analyzed.81

It proved to be non-trivial to produce films which, upon annealing, crystallized into

phase-pure perovskite PbTiO3. Instead, the films often degrade into a mixture of PTO,

pyrochlore forms (PbTi3O7 and Pb2Ti2O6), various lead oxides (PbOx), and rutile tiania.

At this time it is unclear exactly what causes this behavior. Additional research into the

thermodynamics and crystallization behavior of these films would be of great value.

8.1 Future Work

While the work presented herein is noteworthy, and lays a framework for further investi-

gation and refinement of ALD deposited perovskite oxides including the topic of discussion

of this thesis, there is much left to be investigated in this line of research. Next steps would

serve to further refine the process to improve the reliability of deposition, improving the

phase purity and improve the degree of epitaxy of the grown film, or better conserve and

deliver precursor (issues that plagued this project throughout its course). Being able to

consistently produce films of constant quality would make this work applicable to a myriad

of material systems.

Additionally, there is one aspect of film characterization that had not been investigated

thoroughly during the course of this project: the ferroelectric character of the films. Verifi-

cation of ferroelectric behavior, even initially in isolated grains, would greatly improve the

value of the method. Initial tests would likely require the use of microscopy techniques, e.g.

piezoelectric force microscopy (PFM), to measure response of isolated grains of ferroelectric

material; more standard ferroelectric measurements could likely be utilized with improved

film quality and phase purity.
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Following this path of discussion quickly leads to the question of doping the films in

order to improve properties. The obvious example here would be the development of an

ALD process for PbZr0.52Ti0.48O3. Lead titanate as a material is rather uncommonly used

in applications, however as a simplified example of this family it was a prime candidate for

the primary research. This project thus serves as a gateway to exploring the more valuable

and technically relevant materials via ALD.

Finally, it would be useful to extend this method to completely new material families.

(Ba,Sr)TiO3 is another commonly used ferroelectric material. Use of this material is gaining

interest not only due to its intrinsic properties, but also due to its lack of lead content which

makes it a far more environmentally conscious choice. BiFeO3 and corresponding doped

materials, are another interesting perovskite. This set of materials presents multiferroic —

a combination of (anti)ferromagnetism and ferroelectricity — behavior, making it a prime

target for such novel technologies as spintronics.
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Appendix A: List of Chemicals

Table A.1: List of chemical compounds used during the course of this study.

Chemical Chemical CAS # Molec. Source
Name Formula Weight

Lead(II) hexafluoro- Pb(C5O2HF6)2 19648-88-5 621.29 Strem Chemicals,
acetylacetonate Inc.
Bis(2,2,6,6-tetramethyl Pb(C11H19O2)2 21319-43-7 573.50 Strem Chemicals,
-3,5-heptanedionato) Inc.
Lead(II)
Titanium(IV) Ti[OCH(CH3)2]4 546-68-9 284.25 Strem Chemicals,
i-propoxide Inc.

Isopropyl Alcohol (IPA) (CH3)2CHOH 67-63-0 60.10 Alfa Aesar
Acetone C3H6O 67-64-1 58.08 Alfa Aesar
Buffered Hydrofluoric NH4F-HF 7664-39-3 N/A Alfa Aesar
Acid (BHF) & 12125-01-8
Ozone O3 10028-15-6 48.00
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Appendix B: ALD Reactor Diagram

(a) Photograph (b) Schematic Diagram

Figure B.1: Cambridge NanoTech, Inc. Savannah S100 ALD reactor. Precursors are stored in heated
cylinders, flow up to the reaction zone, and byproducts are pumped out of the vacuum line on the right

side. Each zone can be individually temperature controlled.

Image Sources: (a) http: // www. cambridgenanotech. com/ products/ savannah. php via Cambridge NanoTech, Inc.42

(b) Screenshot taken from Savannah ALD Control Software, via Cambridge NanoTech, Inc.42

http://www.cambridgenanotech.com/products/savannah.php
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Appendix C: Composition Results

Figure C.1: The XRF spectrum collected from deposition run #0.

Figure C.2: The XRF spectrum collected from deposition run #20 deposited on platinized silicon. The
peak between the substrate and Pb is that of Pt.
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Appendix D: Ellipsometry Results

Table D.1: Variables used to produce the
model fit for PTO #0 seen in fig. D.1 on page 82.

Layer Variable Thickness (nm) Value

2. T-L Osc. 88.7
ε1 offset 2.49
Amp 12.66
En 4.60
C 1.35
Eg 0.86

1. SiO2 203.7
0. Si Substrate

Table D.2: Band gap energies, determined via Tauc analysis of ellipsometric data

Run # Subs. Type Band Gap (eV)

0 Si 3.763
20 Pt-Si 4.058
28 STO 3.506
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Table D.3: Variables used to produce the
model fit for PTO #20 seen in fig. D.3 on page 84.

Layer Variable Thickness (nm) Value

3. T-L Osc. 75.6
ε1 offset 3.62
Amp 36.54
En 4.51
C 1.30
Eg 2.07

2. Pt 15.1
1. SiO2 1.1
0. Si Substrate

Table D.4: Variables used to produce the
model fit for PTO #28 seen in fig. D.5 on page 86.

Layer Variable Thickness (nm) Value

1. T-L Osc. (2) 49.2
ε1 offset 1.42
Amp1 64.71
En1 3.69
C1 4.44
Eg1 1.55
Amp2 1.55
En2 2.12
C2 0.76
Eg2 0.001

0. STO Substrate
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Figure D.1: The set of plots shown above show the results from ellipsometric analysis on sample #0
(see table 7.1 on page 57) grown on a silicon wafer and subsequently annealed. (a) and (b) show the

data and the modeled fit from the experiment. (c) shows the components of the complex index of
refraction (ñ), n and k. Band gap estimation was performed using the values of k. The highlighted

portion of k is the nearly linear region used in this analysis.
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Figure D.2: Tauc analysis used to determine the bandgap of PTO #0. (a) shows the values of the
absorption coefficient (α) calculated from k (seen in figure D.1c on the previous page). (b) shows the

Tauc plot, the linear region can provide an estimate of the bandgap of the material.
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Figure D.3: Results of ellipsometric analysis on sample #20, deposited on a platinized silicon substrate.
As in fig.D.1, (a) and (b) show the experimental data and model fits of psi and delta (respectively). (c)

gives the plot of calculated n and k. For model parameters, see table D.3 on page 81
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Figure D.4: Tauc analysis of sample #20 on Pt-Si
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Figure D.5: Results of ellipsometric analysis on sample #28, deposited on a strontium titanate
SrTiO3(100) single crystalline substrate. As in fig. D.1, (a) and (b) show the experimental data and

model fits of psi and delta (respectively). (c) gives the plot of calculated n and k. This sample would
not model well without a second oscillator, which gives rise to the secondary peaks in the n, k, and α

plots (see fig. D.6a on the following page). For model parameters, see table D.4 on page 81.
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Figure D.6: Eg = 3.506. Tauc analysis of sample #28 - STO. Notice that the second oscillator can be
seen in the absorption coefficient (a), but does not affect the shape of the Tauc plot (b) and thus does

not interfere with bandgap estimation.
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